Meningitis meningocócica y caos
Meningococcal meningitis and chaos

Señor Editor: Recientemente se ha analizado la dinámica de la meningitis meningocócica en Chile. Con un modelo de ecuaciones de diferencia basado en la interacción casos-susceptibles y en una proporción constante de portadores más el análisis de la serie observada de casos, con modelos multiplicativos de ARIMA-SARIMA, se ha propuesto que aumentos en la transmisibilidad o en la proporción de portadores podrían producir una dinámica caótica estacional, que impediría una predicción a largo plazo. A pesar de lograr un adecuado ajuste en el modelo ARIMA-SARIMA, a partir del noveno mes la capacidad predictiva disminuye claramente, lo cual induce a pensar en una dinámica caótica (rápida pérdida de información). En esta nota complementamos el trabajo anterior demostrando que en la dinámica de la serie observada de casos existe efectivamente caos, y estimamos la tasa de pérdida de información de la serie de casos.

Analizamos la serie mensual de casos entre 1975 y 1994 sin \(S(t) \) y con desestacionalización \(W(t) = S(t) - S(t-12) \). Se construyeron los attractores graficando los datos en ejes \(X(t), X(t+\alpha), X(t+2\alpha) \), siguiendo a Takens (1981) con \(\beta = 3 \) meses y a Schaffer y Kot (1985). En ambas series \(S(t) \) y \(W(t) \) se calcularon las dimensiones de correlación \(d \) con el algoritmo de Grassberger y Procaccia (1983) y el mayor exponente de Lyapunov \(l \) con el algoritmo de Wolf et al.; ambos algoritmos implementados en el programa SANTIS (Signal Analysis and Time Series Processing, 1996). Como referencia, estas dos últimas características miden la complejidad y geometría fractal del attractor \(d \) no entera) y la tasa de crecimiento exponencial de las incertezas \(l \) o predictibilidad.

Los resultados confirman que la meningitis meningocócica en Chile tiene una dinámica caótica instalada sobre un patrón estacional de base. Su dinámica es compleja \((d = 2.14) \) con geometría fractal \((d \) no entera) y una pérdida de información estimada en 0.542 Bits/año. La complejidad no cambia mayormente al desestacionalizar la serie, sin embargo, la pérdida de información disminuye. La diferencia entre los exponentes de Lyapunov de \(S(t) \) y \(W(t) \) es una medida de la impredecibilidad introducida por el factor estacional. Como referencia, la dinámica teórica generada por el modelo de Canals (1996) analizada con el mismo método reveló una dimensión de correlación \(d = 2.358 \) y un exponente de Lyapunov \(l = 0.512 \) Bits/año, ambos valores muy semejantes a los de la serie observada de casos.

Las dimensiones de correlación aquí estimadas son algo menores que las detectadas en otros países. Olsen et al. (1988) encontraron dimensiones de 3.07 en Sarampión, 4.01 en Coqueluche Y 3.92 en Escarlatina en Copenhagen, aunque dichos autores reconocen que sus valores están sobrestimados. El exponente de Lyapunov de la serie no desestacionalizada es similar a lo obtenido por otros autores. Schaffer y Kot (1985) obtuvieron 0.56 Bits/año y 0.6 Bits/año para Sarampión en Nueva York y Baltimore, respectivamente. Olsen et al. (1992) señalan 0.6 Bits/año en Sarampión, 0.65 Bits/año para Coqueluche y 0.52 Bits/año en Escarlatina en Copenhagen. Canals y Lahra (1997) encuentran dimensiones de correlación entre 1.936 y 2.827 y exponentes de Lyapunov entre 0.512 y 1.107 Bits/año en un estudio en siete enfermedades infecciosas en Chile.

La dinámica de las enfermedades infecciosas obedece a gran cantidad de factores en interacción. Esta puede ser predominantemente de tipo estacional (como tifoidea, hepatitis o meningitis, o presentar recurrencia epidémica periódica...
Tabla 1. Dimensión de correlación (d) y mayor exponente de Lyapunov (L) (Bits/año) de la serie de casos de meningitis meningocócica en Chile

<table>
<thead>
<tr>
<th>S(t)</th>
<th>W(t)</th>
<th>dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>2,540</td>
<td>3,084</td>
</tr>
<tr>
<td>L</td>
<td>0,542</td>
<td>0,362</td>
</tr>
</tbody>
</table>

S(t): serie de casos; W(t): serie desestacionalizada; dL: es el cambio en L después de desestacionalizar.

como Sarapiqui y Escarlata o una situación de endemia.

Considerando exclusivamente la fracción lineal del sistema es posible considerar la dinámica de las enfermedades infecciosas como resultado de la interacción entre la variación estacional de la transmisibilidad y de los ciclos de mayor período generados por la interacción casos-susceptibles. Sin embargo, la variación en las tasas de contacto entre los individuos (como en el hacinamiento), la humedad o la temperatura pueden causar "resonancia" provocando oscilaciones en la casústica que se mantienen y/o amplifican en el tiempo. Los factores estocásticos como fenómenos migratorios y otros que afecten el tamaño poblacional pueden afectar la dinámica.

Los factores como densodependencia, transmisibilidad e interacción casos-susceptibles participan en la fracción no-lineal del sistema y cambios importantes en ellos fuerzan dinámicas caóticas que generan la conocida impredecibilidad a largo plazo de las enfermedades infecciosas, como en el caso aquí analizado. El reconocimiento del caso en la dinámica, y la determinación de la tasa de pérdida de información del sistema a través del tiempo (exponente de Lyapunov) permiten optimizar los mecanismos de vigilancia y control de las enfermedades infecciosas. El estudio de la fracción no lineal del sistema permite identificar los componentes de los parámetros forzantes que intervienen en la génesis de brotes epidémicos u otras situaciones impredecibles. En el caso de la meningitis, los umbrales que determinan bifurcaciones en las dinámicas se ven en localmente en áreas de hacinamiento o situaciones ecológicas particulares.

Mauricio Canals L, Fabián Labra S
Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias, Universidad de Chile. Casilla 2, Correo 15, La Granja, Fax: 56 (2) 541680; y Laboratorio de conductas cíclicas, Sueño y Neurología, Facultad de Medicina, Universidad de Chile.

Girujano Dentista

Referencias
